
Force, N	lass and	Acceleration	Activity
----------	----------	--------------	----------

Research Question: What is the relationship between Force, Mass and Acceleration in the system pictured at the right?	Setup: -Turn ON SPARK; Select 'SPARKvue' > Sensor Data > open photogate settings> photogate only> photogate & picket fence > . - Set band spacing to 1cm (.01m) - Check "velocity"> on right, select 'Table and Graph' - when trial is prepared, click 'Start' at bottom of tablet
--	---

<u>Prelab Question:</u> Which **force** will make the **system** accelerate?

A. What will happen to the acceleration of the system if you keep the hanging mass <u>constant</u> but <u>change</u> the total mass of the system? IV = _____ DV = _____

Hypothesis #1 :

- B. Write the steps of an experiment you could perform to test Hypothesis #1.

Procedure #1 :

2. A. What will happen to the acceleration of the system if you <u>change</u> the **mass hanging** on the end but keep the **total mass of the system** <u>constant</u>? IV = _____ DV = _____

Hypothesis #2 :

- B. Write the **steps** of an experiment you could perform to test **Hypothesis #2.**

Procedure #2 :

1. C. Perform your **Procedure #1** and record your data in the table provided.

Total Mass ()	Hanging Mass ()	Acc 1 ()	Acc 2 ()	Acc 3 ()	Acc Avg ()

D. Graph your data from **Procedure #1** on a seperate sheet of paper

E. Interpret and explain your data to define the relationship between mass and acceleration in Procedure #1

2. C. Perform your **Procedure #2** and record your data in the table provided.

Total Mass ()	Hanging Mass ()	Acc 1 ()	Acc 2 ()	Acc 3 ()	Acc Avg ()

D. Graph your data from **Procedure #2** on a seperate sheet of paper

E. Interpret and explain your data to define the relationship between mass and acceleration in Procedure #2