y=20x	y=10x2	y=10x3	y=105x	y=50	y= 100 x	y=1
× y	$x \mid y$	$x \mid y$	$x \mid y$	x y	x y	×
0,5)	T	1	0,5	2
1	2	2	4	3	1	5
2	4	3	9	5	2	10
4	6	Power=3	Power = 1	10	5	Pow
10	Power= 2	[*]	[9]	Power = 0	10	Slop
Power= 1	[+]	Slope=	Slope=	[0]	Power = -1	3/04
	Slope =			Slope =	[>]	
[×]					Slope =	
510pe =						
	0					

Is it a straight line?

<u>Learn:</u> How to use log-log graph paper to graph the <u>logarithms</u> of two variables, without having to calculate their logs.

Learn: What a "power function" is $[y = (constant)(x^n)]$

Learn: that all power functions graph as straight lines when their variables are transformed to their logs.

Learn: the relation between the power (n in the equation $y=Ax^n$)

and the slope of the graph of log(y) vs log(x)

Learn: what a <u>negative power</u> means in a power function, and what such a function looks like on the log-log graph.

On the log-log graph paper you are given for this homework, the range of x-values goes from 0.5 to 10, and the range of y-values goes from 10 to 400. In each of the following problems, calculate 'y' for each of the values of 'x' that are given. Then graph $\log(y)$ vs $\log(x)$, without calculating the logarithms. So that you can tell which points go with which function, use the symbols [] given with each problem. Connect the points and measure the slope -- using centimeters, or \log values, not the numbers whose \log you have graphed.

- 1. [x] Power: 1 y=20x (x is the same as x^1) for x=0.5, 1, 2, 4, 10
- 2. [+] Power: 2 $y=10x^2$ for x=1, 2, 4, 6
- 3. [*] Power: 3 $y=10x^3$ for x=1, 2, 3
- 4. [q] Power: 1/2 y=10x(1/2) (same as 10 x square root of x) for x = 1, 4,
- 5. [0] Power: 0 $y=50x^0$ ($x^0=1$, so the same as: y=50) for x=1, 3, 5, 10
- 6. [>] Power: -1 $y=100x^{-1}$ (same as y=100/x) for x=0.5, 1, 2, 5, 10
- 7. [<] Power: -2 y=1000x⁻² (same as y=1000/(x²)) for x = 2, 5, 10
- 8. [#] Finally a function that is <u>not</u> a power function: $y = 20 + x^2$ for x = 1, 2, 3, 5, 10