Mixing It Up

- 1. Describe what happens to energy when two objects of different temperature are placed together.
- 2. When 100. g of 20.0°C water is poured into 100. g of 10.0°C water the resulting temperature for the mixture is 15.0°C. Fill out the chart for the energy transfer one degree at a time.

M _{hot} (kg)	ΔT _{Hot} (°C)	T _{Hot Final} (°C)	Energy Transferred (J)	M _{cold} (kg)	ΔT _{Cold} (°C)	T _{Cold Final} (°C)
0.100	-1			0.100		
0.100	-1			0.100		
0.100	-1			0.100		
0.100	-1			0.100		
0.100	-1			0.100		

3. Find the amount of energy transferred and the final temperature of the combination when 200. g of water at 40.0°C is combined with 100. g at 10.0°C. Use the table below to step through the process at 1.0°C decreases for the hot water.

M _{hot} (kg)	ΔT _{Hot} (°C)	T _{Hot Final} (°C)	Energy Transferred (J)	M _{cold} (kg)	ΔT _{Cold} (°C)	T _{Cold Final} (°C)
	-1					

- 4. A 500 g cube of steel (c = 440 J kg⁻¹ K⁻¹) is cooled from 100°C to 25 °C when it is placed in a bucket of water that was originally 22°C.
 - a. Calculate the heat lost by the steel.
 - b. Calculate the mass of the water in the bucket.

- 5. Three 10 gram ice cubes are placed in a glass with 250 grams of water. Assume the ice cubes have an initial temperature of 273 K and the water in the glass is initially 20°C.
 - a. Calculate the amount of heat needed to melt the ice cubes.
 - b. Determine the final temperature of the system if no heat is lost to the outside.
- A 0.50 kg block of metal is heated to 95°C. It is then placed in 0.80 kg of water at 20°C. The final temperature of the combination is 27°C. Calculate the specific heat of the metal.
- 7. A swordsmith is forging a sword out of 1.0 kg of carbon steel (c = 490 J kg⁻¹ K⁻¹). To harden the material, the swordsmith plans to heat the sword to 900°C in an oven and quickly quench it in a liquid.
 - a. The swordsmith's first choice is 15.0 kg of mineral oil (c = 1670 J kg⁻¹ K⁻¹) at 25°C in a tank. Calculate the final temperature of the mixture if no heat is lost to the outside.
 - b. The swordsmith's second choice is 15.0 kg of water (c = 1670 J kg⁻¹ K⁻¹) at 25°C in a tank. Calculate the final temperature of the mixture if no heat is lost to the outside.
 - c. Which liquid cools the sword more quickly?
- Ice cream can be made by dropping cream (c = 3100 J kg⁻¹ K⁻¹) into liquid nitrogen (c = 1040 J kg⁻¹ K⁻¹, L = 200,000 J kg⁻¹). Assume 1 kg of cream starts at 20°C and 20 kg of liquid nitrogen starts at -196°C (its boiling point) and that the system is thermally isolated.
 - a. If ice cream is served at -15°C, calculate how much heat is removed from the cream.
 - b. Determine how much heat is added to the liquid nitrogen.
 - c. Determine the final temperature of the liquid nitrogen.
 - d. Calculate how much liquid nitrogen evaporated during this process.