Electromagnetism Calculations

1. The magnitude of the magnetic field around a current-carrying wire is given by the equation $B=\frac{\mu_{0} I}{2 \pi d}$ where I is the current and d is the distance away from the wire. Calculate the magnetic field 0.50 m and 1.0 m away from a wire with a 0.25 A current.
2. A $1.0 \times 10^{-3} \mathrm{~T}$ magnetic field is measured 0.25 meters from a wire. Determine the current in the wire.
3. A 10.0 V battery is arranged in a simple circuit with a 250Ω resistor. Calculate the magnetic field 10.0 cm from the wire.
4. A charge moving in a magnetic field experiences a force described by the equation $F=q v \times B$. A positively charged particle $(q=+2.0 \mu \mathrm{C})$ enters a region with a magnetic field $\left(B=3.0 \times 10^{-3} \mathrm{~T}\right)$ as shown. The particle is traveling $100 \mathrm{~m} \mathrm{~s}^{-1}$. Calculate and draw the force of the field on the charge.

5. An electron enters a region in which there is a magnetic field directed out of the page at $2.0 \times 10^{-6} \mathrm{~T}$. The electron travels in a circular path with a radius of 10.0 cm .
a. Draw a diagram of the situation and explain how the electron would travel in a circular path.
b. Calculate the speed of the electron.
6. In a mass spectrometer, ionized samples of a gas are accelerated into a chamber. A velocity selector ensures all of the samples are traveling the same speed ($v_{\text {ion }}$). A simplified version is shown at right. The chamber contains a magnetic field (B) and a series of detectors along the wall.
a. What sign of charge would reach the detector?
b. Explain why the gas sample would follow a
 circular path.
c. Derive an equation that relates the mass of the ion to the radius of the path.
7. The force on a current-carrying wire that is in a magnetic field is given by the equation $F=I l \times B$ where l is the vector along the wire in the direction of the current. A 2 m wire is carrying a current of 5 A and is oriented perpendicular to the Earth's magnetic field of $5 \times 10^{-5} \mathrm{~T}$. Calculate the force on the wire.
8. Two 0.5 meter wires are placed parallel to one another, 0.25 meters apart. Wire A has a current of 0.5 A , while wire B has a current of 0.1 A .
a. Calculate the force of wire A on wire B.
b. Describe an arrangement where the force would be attractive.
c. Describe an arrangement where the force would be repulsive.
