Mirror Images

1. Explain the relationship between the location of the image and whether the image is real or virtual.
2. Explain the relationship between real/virtual images and upright/inverted images. Include sketches in your explanation.
3. A $6-\mathrm{cm}$ tall object placed 25.0 cm from a converging mirror having a focal length of 10.0 cm .
a. Sketch the ray diagram for this situation.
b. Calculate the position and height of the image.
c. Classify the image as real or virtual, upright or inverted.
4. A $6-\mathrm{cm}$ tall object placed 10.0 cm from a converging mirror having a focal length of 10.0 cm . Sketch the ray diagram for this situation.
a. Sketch the ray diagram for this situation.
b. Calculate the position and height of the image.
c. Classify the image as real or virtual, upright or inverted.
5. A $6-\mathrm{cm}$ tall object placed 5.0 cm from a converging mirror having a focal length of 10.0 cm . Sketch the ray diagram for this situation.
a. Sketch the ray diagram for this situation.
b. Calculate the position and height of the image.
c. Classify the image as real or virtual, upright or inverted.
6. An inverted image is magnified by 1.5 when the object is placed 15 cm in front of a converging mirror. Determine the image distance and the focal length of the mirror. Sketch the ray diagram for this situation.
7. An inverted image is larger by a factor of 3 when placed in front of a converging mirror with a focal length of 20.0 cm .
a. Determine the object and image distances for this situation.
b. Draw the diagram.
8. A spherical mirror has an effective focal length given by $f=\frac{r}{2}$.
a. Explain the limitations on considering this the focal length of the mirror.
b. Describe the source of spherical aberration.
c. Describe the visual impact of spherical aberration.
d. Describe some techniques to minimize the spherical aberration of a particular mirror.
9. An external rearview car mirror is convex with a radius of 16.0 m .
a. Determine the location of the image and its magnification for an object 10.0 m from the mirror.
b. Explain why it makes sense to use this type of mirror on a car.
