Describing a Pulse

The following pulse is traveling to the right along a slinky. Assume each point is equally spaced along the slinky when the slinky is in equilibrium.

	A E F
1.	Describe the velocity of each point that is labelled above. A.
	B.
	C.
	D.
	E.
	F.
2.	Assume the pulse took 0.4 seconds to create. Identify the location and velocity of each point 0.1 seconds later. A diagram might help. A.
	B.
	C.

D.

E.

F.

3. Assume the following pulses are traveling in opposite directions along the slinky and each took the same amount of time to create.

Sketch a series of diagrams that show the arrangement when:

- a. the pulses initially meet.
- b. the pulses initially overlap by $\frac{1}{4}$ of the pulse.
- c. the pulses overlap by $\frac{1}{2}$ of a pulse.
- d. the pulses overlap by ¾ of a pulse.
- e. the pulses completely overlap.
- f. the pulses overlap by ¾ of a pulse the second time.
- g. the pulses overlap by ½ of a pulse the second time.
- h. the pulses overlap by $\frac{1}{4}$ of a pulse the second time.
- 4. Assume the following pulses are traveling in opposite directions along the slinky and each took the same amount of time to create.

Sketch a series of diagrams that show the arrangement when:

- a. the pulses initially meet.
- b. the pulses initially overlap by ½ of the pulse.
- c. the pulses overlap by $\frac{1}{2}$ of a pulse.
- d. the pulses overlap by $\frac{3}{4}$ of a pulse.
- e. the pulses completely overlap.
- f. the pulses overlap by ¾ of a pulse the second time.
- g. the pulses overlap by $\frac{1}{2}$ of a pulse the second time.
- h. the pulses overlap by ¼ of a pulse the second time.
- 5. On your diagrams, identify four key positions and add the velocity vectors to your diagram.