Derivation of Capacitor Charging and Discharging Equations

Charging of a Capacitor (Switch in Position A)

By Kirchhoff's Laws, $V_{B}-V_{R}-V_{C}=0$. With some simple substitution, $V_{B}-i R-\frac{q}{C}=0$. We know that the current describes the rate at which charge is increasing on the plate of the capacitor. This can be written as $i=\frac{d q}{d t}$.
This leads to $V_{B}-\frac{d q}{d t} R-\frac{q}{C}=0$
With some algebra, this equation becomes

$\frac{V_{B} C-q}{R C}=\frac{d q}{d t}$
Separating the variables of q and t gives $\frac{d t}{R C}=\frac{d q}{V_{B} C-q}$
This form can be analysed by assuming $u=V_{B} C-q$ which leads to $d u=-d q$
So $\frac{d t}{R C}=-\frac{d u}{u}$.
Integrating both sides $\int \frac{d t}{R C}=\int-\frac{d u}{u}$ leads to $\frac{t}{R C}+k=-\ln (u)$ where k is some constant.
Substituting for u and multiplying by -1 leads to $-\frac{t}{R C}-k=\ln \left(V_{B} C-q\right)$
So $e^{-\frac{t}{\pi C}} e^{-k}=V_{B} C-q$ but we know that at $t=0, q=0$ so $e^{-k}=V_{B} C$
Then $V_{B} C e^{-\frac{t}{k c}}=V_{B} C-q$
Solving for q gives

$$
q=V_{B} C\left(1-e^{-\frac{1}{K C}}\right)
$$

which is the equation that describes the charge on a capacitor during charging.
Since the potential difference across the capacitor is $V=\frac{q}{C}$,

$$
V_{C}=V_{B}\left(1-e^{-\frac{1}{\pi C}}\right)
$$

As stated earlier, $i=\frac{d q}{d t}$ so $i=\frac{d}{d t}\left(V_{B} C\left(1-e^{-\frac{1}{k c}}\right)\right)=\left(-\frac{1}{R C}\right) V_{B} C\left(-e^{-\frac{1}{k c}}\right)$. This simplifies to:

$$
i=\frac{V_{B}}{R} e^{-\frac{1}{c c}}
$$

The resistor obeys Ohm's Law $V=i R$, so

$$
V_{R}=V_{B} e^{-\frac{1}{k c}}
$$

Notice that all of these equations include $e^{-\frac{1}{\pi c}} . \mathrm{RC}$ determines the rate of change for the curves. This is a quantity called the "time constant."

$$
\tau=R C
$$

Discharging a Capacitor (Switch in Position B)

When the switch is changed from position A to position B, Kirchhoff's law gives $V_{C}-V_{R}=0$. Subtituting $V_{C}=\frac{q}{C}$ and $V_{R}=i R$ leads to $\frac{q}{C}-i R=0$.
During the discharge process, $i=-\frac{d q}{d t}$ so $\frac{q}{C}-\left(-\frac{d q}{d t}\right) R=0$.

Separating variables $-\frac{d t}{R C}=\frac{d q}{q}$.
Integrating both sides $\int-\frac{d t}{R C}=\int \frac{d q}{q}$ leads to $-\frac{t}{R C}+k=\ln (q)$ and $e^{-\frac{t}{R C}} e^{k}=q$
Knowing that at $t=0, q=q_{0}$ produces the equation

$$
q=q_{0} e^{-\frac{t}{R C}}
$$

Since $i=-\frac{d q}{d t}$ and $q_{0}=C V_{0}$

$$
i=\frac{V_{0}}{R} e^{-\frac{t}{R C}}
$$

Going back to Ohm's law and Kirchhoff's law

$$
V_{C}=V_{R}=V_{0} e^{-\frac{t}{R C}}
$$

