Series and Parallel

1. A circuit is set up as shown.
a. Calculate the effective resistance of the circuit.
b. Calculate the current through the 8Ω resistor.
c. Calculate the current through the 4Ω resistor.

d. Calculate the potential difference across each resistor.
2. Given the circuit shown with three resistors of R, $2 R$, and $3 R$ connected to an ideal battery with a potential difference of V_{B}. Calculate the potential difference across each resistor.
3. Consider this circuit.

a. Calculate the effective resistance of the circuit.
b. Calculate the current in each resistor.
c. Predict the effect on the circuit if another 50Ω resistor was added in parallel.
4. A circuit with three resistors of $5 \Omega, 6 \Omega$, and 12Ω is wired in parallel with an ideal battery with a potential difference of 12 V .
a. Draw the circuit diagram.
b. Calculate the current through each resistor.
c. Calculate the current out of the battery.
5. Consider this circuit.
a. Calculate the effective resistance of the circuit.
b. Calculate the voltage across each resistor.
c. Calculate the current through each
 resistor.
d. Calculate the power dissipated by each resistor.
e. Predict the effect on the circuit if the 3Ω resistor was replaced with a 100Ω resistor.
f. Predict the effect on the circuit if the 6Ω resistor was replaced with a 100Ω resistor.
6. Consider this circuit.
a. Calculate the effective resistance of the circuit.
b. Calculate the voltage across each resistor.
c. Calculate the current through each resistor.
d. Calculate the power dissipated by each resistor.
7. Consider this circuit.
a. Calculate the effective resistance of the circuit.
b. Calculate the voltage across each resistor.
c. Calculate the current through each resistor.
d. Calculate the power dissipated by each resistor.

e. Predict the effect on the circuit if the 3Ω resistor was replaced with a 100Ω resistor.
f. Predict the effect on the circuit if the 6Ω resistor was replaced with a 100Ω resistor.
